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We have investigated the Si and O self-diffusion in stoichiometric and substoichiometric amorphous SiO2 by
means of molecular-dynamics simulations. The diffusivity and the migration energies at different Si concen-
trations are reported and the results in qualitative agreement with previous experimental and theoretical �ab
initio� results. We prove that the diffusion of Si and O occurs through steplike events. In particular, we identify
three mechanisms, associated with coordination and “local stoichiometry” defects, responsible for the diffu-
sion. The migration energy and pre-exponential factor, as well as the relative relevance of these mechanisms,
is computed as a function of the Si concentration and temperature. A model for interpreting our results is
proposed and discussed.
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I. INTRODUCTION

Due to the shrinking of the size of transistors, the tradi-
tional methods of transferring data within and across devices
has become the bottleneck for any further improvement of
performance in microelectronics. Photonics, possibly based
on silicon, has been identified as a viable solution for the
problem. Unfortunately, due to its indirect gap, bulk silicon
is a poor light emitter. However, it has been found that its
optical properties improve when the dimension of the silicon
structures become comparable with the wavelength of
electrons.1

The experimental evidence of efficient light emission by
silicon nanoparticles has paved the way for a technological
leap. Silicon nanocrystals embedded in amorphous SiO2 has
emerged as the most promising material for this purpose.2

Typically, this system is obtained by means of thermal cycles
on a sample of Si-rich SiO2 �hereafter indicated as SiO2−x�.
Experiments3 have shown that the emission efficiency of Si
nanocrystal/amorphous SiO2 �Si-nc /a-SiO2� systems de-
pends on the preparation of the sample, as this affects the
structure of the system. Therefore, the understanding of the
formation mechanism of Si-nc in a-SiO2 is a key step in
developing strategies for improving its optical properties.

Several authors suggest that the formation of nanopar-
ticles is governed by the Ostwald ripening mechanism4 and,
in particular, by the diffusivity of Si atoms from smaller to
larger nanoparticles. It was also found a strong dependency
of the crystal growth from Si supersaturation, which seems
to be in conflict with the Ostwald mechanism �Ref. 5, and
reference therein�. However, also in this case, this was con-

sidered an indication that the Si diffusion is the limiting step
of the overall process. It would be therefore of particular
interest to study the diffusivity of Si and its mechanism in
stoichiometric and nonstoichiometric conditions. Unfortu-
nately, to the best of our knowledge, no experimental studies
on diffusion of Si in amorphous SiO2 in absence of a Si /SiO2
extended interfaces �i.e., in real conditions for the formation
of nanoparticles� are available, especially concerning the
identification of the mechanism of the diffusion. This is
likely due to the fact that it is hard to generate a controlled
concentration profile of isotopic Si into a bulklike sample
�with no interface� so as to measure its variation upon ther-
mal annealing. However, in a recent paper, Yu et al.5 have
addressed the identification of the atomistic mechanisms of
diffusion of one excess Si atom in a-SiO2 by performing ab
initio calculations.

In this paper, the authors identified possible equilibrium
sites and calculated the corresponding energy barrier for the
diffusion of the excess Si atom by means of the nudged
elastic band �NEB� method.6 However, this investigation did
not take into account neither the different concentrations of
excess Si atoms nor the possible fluctuation of Si density
within the samples. Finally, because of the use of NEB, the
effect of temperature is not taken into account.

The aim of this paper is to study the diffusion mecha-
nisms of Si and O in a-SiO2 at different temperatures and for
different Si-atoms’ concentrations by means of classical
molecular-dynamics �MD� simulations. We do not assume
any a priori hypothesis on the mechanisms. Rather, by ana-
lyzing the MD trajectories we identify the set of most rel-
evant mechanisms occurring at various thermodynamical and
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chemical conditions. Finally, we calculate the contribution of
each individual mechanism to diffusion and analyze the role
of thermodynamical and chemical conditions.

The paper is organized as follows: in Sec. II we shortly
revise the theoretical background of the calculation of diffu-
sivity within MD and present a method for calculating the
contribution of different mechanisms to the diffusivity. In
Sec. III we describe the atomistic and the interaction model
used in this paper. In Sec. IV A we present the results on the
diffusivity and compare them with experimental and compu-
tational results available in literature. In Sec. IV B we ana-
lyze the contribution of a set of possible mechanism to the
diffusivity of silicon. Finally, in Sec. V we draw the conclu-
sions of this research.

II. THEORETICAL BACKGROUND

Solid-state self-diffusion is commonly due to several pos-
sible concurrent mechanisms, typically related to the pres-
ence and the dynamics of defects of different kind. For ex-
ample, in crystals these defects typically are vacancy, self-
interstitial, etc. Even though in amorphous materials the
origin of self-diffusivity is less well understood, also in this
case it is thought that it is induced by several concurrent
mechanisms. Typically, however, the experimental interpre-
tation of diffusivity-vs-temperature measurements is based
on the phenomenological Arrhenius law,

D�T� = D� exp�−
E

kbT
� , �1�

where D� is the diffusivity at high temperature and E is the
�average� migration energy, representing the �average� en-
ergy barrier to be overcome during diffusion. In Eq. �1� T
and kb represent the temperature and the Boltzmann constant,
respectively. The theoretical atomic-scale investigation on
self-diffusion is rather based on the calculation of the mean-
square displacement �MSD�, according to the Einstein
random-walk equation

D�T� = lim
t→�

1

6

d��r2�t��
dt

, �2�

where the t→� limit stands for simulations performed for
long enough times. Equation �2� is straightforwardly imple-
mented in MD since the MSD is defined as

��r2�t�� =��
i=1

N

	r�i�t� − r�i�0�
� , �3�

where r�i�t� and r�i�0� are the positions of the ith atom at time
t and time 0, respectively, and it is therefore directly com-
puted from the computer-generated atomic trajectories.

In addition, by means of Eq. �2� it is relatively easy to
calculate the contribution to self-diffusion by each given
mechanisms, provided that they are clearly identified. Once
again, this information can be extracted by animation and
inspection of atomic trajectories.

However, determining the contribution of each individual
mechanism to the diffusivity is not trivial. In the following

we shall demonstrate that under proper conditions the MSD
is additive and therefore D�T� is additive as well. We can
therefore resort to Eq. �2� for calculating the D�T� of each
mechanism.

We assume that the diffusion occurs through a sequence
of stepwise events. This assumption is justified by the em-
pirical observation that indeed Si and O atoms diffuse
through a stepwise mechanism in this material �see Fig. 1�.
We can therefore rewrite Eq. �3� as follows:

��r2�t�� =� 1

N
�
i=1

N ��
�=1

L

�r�i�t��2� , �4�

where L is the number of diffusive steps and �r�i�t�� is the
�vector� displacement of ith atom occurring at the time t�. If
the diffusive steps belong to different mechanisms, then Eq.
�4� can be rewritten as follows:

��r2�t�� =� 1

N
�
i=1

N

� �
��M1

�r�i�t�� + �
��M2

�r�i�t�� + ¯2� ,

�5�

where �r�i�t�� is the displacement of ith atom due to an event
of type M1. An analogous definition is valid for �r�i�t��. The
indexes � and � run over the set of events belonging to
mechanism M1 and M2, respectively.

Equation �5� can be further manipulated as

��r2�t�� = ��r�M1

2 �t�� + ��r�M2

2 �t�� + ¯ + 2��r�M1
�t� · �r�M2

�t��

+ ¯ , �6�

where

��rM1

2 �t�� =� 1

N
�
i=1

N

� �
��M1

�r�i�t��2� �7�

and

FIG. 1. �Color online� MSD displacement of few Si atoms se-
lected randomly in the sample. The figure clearly shows that the
diffusion occurs via stepwise events.
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��r�M1
�t� · �r�M2

�t�� =� 1

N
�
i=1

N

�
��M1

�
��M2

�r�i�t�� · �r�i�t��� .

�8�

Similar definitions are assumed for other mechanisms.
If the sample is monophasic and there are no external

fields acting on it, the product �r�M1
�t�� ·�r�M2

�t�� can assume
with the same probability positive and negative values.
Therefore, the term ��r�M1

�t� ·�r�M2
�t�� becomes zero. We

verified that indeed this occurs in our simulations. In fact, the
term ��r�M1

�t� ·�r�M2
�t�� is about three order of magnitude

smaller than the smallest ��rM�

2 �t�� term. Therefore, Eq. �6�
reduces to

��r2�t�� � ��rM1

2 �t�� + ��rM2

2 �t�� + ¯ . �9�

Equation �9� states that, under the above hypothesis, the total
MSD is the sum of MSDs relative to each mechanism. Under
the same hypothesis, Eq. �7� can be further simplified into

��rM1

2 �t�� �
1

N��
i=1

N

�
��M1

�ri
2�t��� . �10�

We verified that also in this case the cross term
��i��,���r�i�t�� ·�r�i�t���� is negligible with respect to
��i���ri

2�t��� �about three order of magnitude smaller�.
Unfortunately, �ri

2�t� is noisy �see top panel of Fig. 2�.
This is due to the interplay of two phenomena: diffusive
steps and atomic vibrations about equilibrium positions. The
problem of the noise can be reduced by averaging the atomic
positions on a time window � centered on the time t. The
window � needs to be larger than the period of a vibration
but not too large otherwise distinct diffusive steps can be
confused. In our simulation we used a � of 100 fs. The �ri

2�t�
computed on average positions is much more regular 	com-
pare Figs. 2�a� and 2�b�
 and shows a clear stepwise behav-
ior. The �ri

2�t�� to be used in Eq. �10� is computed by the

difference of average atomic positions before and after the
time t�.

A key issue is still open, namely, how to identify the times
t� , t� , . . . at which the events of type M1 ,M2 , . . . occur. For
each mechanism, we were able to identify order parameters
�l(r�1�t� , . . . ,r�N�t�) that monitor the occurrence of a diffusive
step. For example, let us assume that one diffusive mecha-
nism implies the change in coordination number of a Si
atom. By monitoring changes in the coordination number of
each silicon we evaluate the total displacement of the mecha-
nism, as indicated in Eq. �10� �see Fig. 2�.

The complete description of the collective coordinates
used for monitoring the mechanisms identified in this paper
is given in Sec. IV B. Anticipating the results, we remark
that using this technique we were able to identify a set of
three mechanisms accounting for more than the 90% of the
diffusivity.

On the basis of the so-computed MSD, we can calculate
the diffusivity of each self-diffusion mechanism and, from
this, the corresponding migration energy EM�

and the pre-
exponential factor D�

M�. Of course, as for the overall E and
D�, these are phenomenological parameters.

A somewhat related approach for the calculation of pa-
rameters governing the mass transport in crystals has been
devised and applied by Da Fano and Jacucci.7 In this ap-
proach, the frequency of events of a given type are counted
and analyzed according to the following Arrhenius-type for-
mula:

�M�
�T� = D�

M� exp�−
EM�

kbT
� = �M�

exp�SM�
/kb�exp�−

EM�

kbT
� ,

�11�

where �M�
�T� is the number of events of a give type, �M�

is
the corresponding attempt frequency, EM�

is the migration
energy, and SM�

is the migration entropy. In this case, Eq.
�11�, and therefore the parameters contained into it, is no
longer phenomenological. Rather, it is derived from transi-
tion state theory in harmonic approximation.

It is worth mentioning that while the Da Fano and Jacucci
method is perfectly justified in the case of crystals, where all
the events of the same kind give the same contribution to the
mass transport, in the case of amorphous materials the valid-
ity of this method is more questionable. In fact, depending
on the environment of the atoms undergoing to a diffusive
event, the corresponding displacement can vary significantly.
This means that in the case of amorphous materials we must
understand a diffusive mechanism in a more loose sense.
However, in the following we have performed both kind of
analysis and, anticipating our results, they both bring to the
same qualitative conclusions.

III. MODEL AND COMPUTATIONAL SETUP

a-SiO2 at various stoichiometries �from 33% to 45% of
Si� was modeled by samples of size ranging from 5184 to
24 000 atoms. The stoichiometric a-SiO2 sample was ob-
tained by quenching from the melt. We started from a well-
equilibrated sample of fluid SiO2 at 8500 K. The density of

FIG. 2. Panel �a� �ri
2�t� for a Si atom �dotted line� and the

corresponding variation in the coordination number �continuous
line�. Panel �b� same data after time average over a time window �.
Values are reported with respect to average values in the period
plotted.
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the sample was kept fixed at the experimental density of
a-SiO2 �2.17 g /cm3�. The sample was then cooled at a rate
of 4	1013 K /s. and, finally, equilibrated for 80 ps at the
target temperatures.

It is important to stress that, since the cooling rate is sev-
eral order of magnitude higher than the experimental one, the
consistency of our computational model with the experimen-
tal samples must be carefully checked. We compared the g�r�
�see Fig. 3� and g��� obtained with the above procedure with
previous experimental8,9 and ab initio10 data, obtaining a
very good quantitative agreement. In substoichiometric
samples, O atoms were randomly replaced by Si atoms. After
the substitution, the system was relaxed for 50 ps, with a
time step of 0.5 fs, by mean of constant-temperature MD
using the Nosè-Hoover chain method.11 Since the experi-
mental density is not available, we kept the density of these
systems fixed at the density of a-SiO2. However, we verified
that with this setup the internal pressure of such samples is
negligible.

We investigated the diffusion in a range of temperature
from 1500 to about 3000 K, depending from the concentra-
tion of Si. Total and mechanism specific MSD of Eqs.
�3�–�6� are computed by means of MD at constant number of
particles, volume and energy. Simulations at different tem-
peratures were performed changing the total energy of the
system. At each concentration and temperature, we run 200
ps MD simulations. We verified that such long simulations
are adequate for reaching the linear regime of the MSD re-
quired by Eq. �2�.

The atomic interactions were treated by means of the
modified Tersoff potential recently developed by Billeter et
al.12 Here we want simply to stress that this potential con-
tains two- and three-body terms and that these interactions
are affected by the environment of the interacting atoms
through an effective coordination number of each of them.
Electrostatic interactions are not included in this model and
this makes it suitable for large-scale simulations. Previous
works have shown that this potential is able to correctly re-
produce several properties of SiO2 and Si /SiO2 systems.12–14

In particular, we tested the ability of the Billeter et al. poten-
tial in reproducing the energetics and the path for the
vacancy-mediated diffusion in crystalline SiO2. We started
from the NEB trajectory obtained by Laino et al.15 based on
an ab initio force model. We performed a NEB simulation
using the Billeter et al. potential finding a migration energy
which is the 80% of that found by Laino et al. The agree-
ment between classical and ab initio configurations along the
NEB trajectory is even better, being the maximum difference
in the bond lengths lower than 3%.

IV. RESULTS AND DISCUSSION

A. Migration energy

Figure 4 shows the diffusivity of Si atoms at various tem-
peratures and Si concentrations as obtained from MSD �see
Sec. II�. Corresponding data for O were computed as well
but not shown in figure as there are no corresponding experi-
mental data to compare with. It is worth noticing that we
performed MD simulations in a temperature range higher
than the experimental one. This is a standard method for
accelerating MD simulations for studying diffusivity. In par-
ticular, under the only hypothesis of an Arrhenius depen-
dence upon temperature �a very widely and common-sense
assumption, indeed� high-temperature data can safely be ex-
trapolated down to room temperature. Of course the reliabil-
ity of the results must be checked a posteriori. In the present
case, we have performed two tests: �i� assessing whether the
system was still in amorphous phase at the higher tempera-
tures; �ii� assessing whether the diffusion data extracted from
such a sample can be extrapolated at lower temperatures. As
for �i�, by analyzing the g�r� we verified that the system
persisted in the amorphous phase also at the higher tempera-
tures. This is not surprising as in simulations, especially con-
stant volume simulations of �relatively� small samples, large
fluctuations of the density are forbidden and the system can
stay in a metastable state despite the fact that exist another
phase at lower free energy. As for �ii�, we verified that the
log of diffusivity is inversely proportional to the temperature

FIG. 3. Pair correlation function of stoichiometric a-SiO2 as
obtained from the quenching from the melt procedure described in
the text. Positions and, when available, magnitudes of peaks as
obtained in previous experimental 	Johnson et al. �Ref. 8� and Sus-
man et al. �Ref. 9�
 and ab initio MD 	Sarnthein et al. �Ref. 10�

works are reported for comparison.

FIG. 4. �Color online� Diffusivity of Si atoms as a function of
the inverse of temperature for SiO2−x samples at various Si concen-
trations. The cyan frame in the graph represents the range of ob-
served experimental values.

ORLANDINI et al. PHYSICAL REVIEW B 81, 014203 �2010�

014203-4



over the whole range of temperature simulated, as requested
from the Arrhenius law. For sake of comparison, we also
report the D�T� vs T range of experimental data16–19 �the
cyan box in Fig. 4�. It can be seen that extrapolated compu-
tational data are well within the experimental range, confirm-
ing the overall agreement of the present results with experi-
mental data.

From Fig. 4 and the corresponding data for the diffusion
of O, we calculated migration energies as a function of the Si
concentration 	see Fig. 5, top
. For the migration energy of
Si at the stoichiometric composition we found a value that is
the 65–75 % of the experimental values,16–19 depending on
the considered experiments. These results are in line with the
predictive capability of the Billeter et al. potential, as evalu-
ated by the test of diffusion in � quartz �see Sec. III�, and the
typical accuracy of diffusivity calculated by means of classi-
cal MD.

We also remark that there exists a relevant difference be-
tween the present simulations and the experimental setup.
The experimental diffusivity is calculated by fitting the con-
centration distribution of radioactive Si atoms in a sample of
SiO2. The radioactive Si is provided by a sample of crystal-
line Si through a Si /a-SiO2 interface. The diffusivity is there-
fore due to a possible two-step mechanism: �i� crossing of
the Si /a-SiO2 interface and �ii� diffusion in a-SiO2. More-
over, these experiments are performed in nonequilibrium
conditions. So, the experimental conditions, which are meant
to study the diffusivity occurring in different kind of sys-
tems, are not directly mimicked by our simulations.

Finally, our results are in qualitative agreement with pre-
vious density functional theory �DFT� calculations,5 which
report an energy barrier of 4.5–5 eV. However, also in this
case it is worth noticing some difference in the setup. In fact,
the DFT calculations were carried out by guessing a diffu-
sion path composed of several steps. The atomistic model for
simulating each of these steps was indeed a cluster model,
therefore elastic forces due to the condensed phase environ-
ment were neglected. Moreover, even though the authors
mention that the diffusion energy changes from one initial/
final site to another of the same type, results are reported
only for one of them. In addition, the small size of the
sample �just 24 SiO2 units� does not allow neither the fluc-
tuation of the �local� density nor of the �local� chemical com-

position of the sample. Since migration energy is affected by
the concentration �see below�, results might change in func-
tion of these fluctuations. Furthermore, since just one path
has been tested, results of Yu et al.5 might be strongly biased
by the only mechanism actually considered.

As for the stoichiometry of the sample, Fig. 4 shows an
increase in diffusion of Si with its concentration. This is
reflected by a decrease in the migration energy E �see Fig. 5,
top� and by an increase in the pre-exponential coefficient D�

�see Fig. 5, bottom�. This trend is in agreement with experi-
mental findings.16 It is interesting to note that a similar trend
is observed for the diffusion of O as well. This seems to
suggest that the diffusion of O and Si atoms is indeed corre-
lated.

B. Mechanisms

In this paragraph we shall identify the diffusion mecha-
nism of silicon and its dependence on the stoichiometry of
the sample. By visual inspection of the trajectories we iden-
tified three types of stepwise mechanisms �see Sec. II� which
can be described in terms of change in coordination for Si
and O atoms or swapping of a Si-Si bond for a Si-O bond �or
vice versa�. Please notice that, at a variance from previous
papers,5 our model does not take into account the actual
value of the coordination number, rather its variation. The
rationale for this choice is that in amorphous samples there
might exist many different configurations, all undergoing to
one of the mechanisms introduced above.

More in detail, the first mechanism consists of the change
in coordination of O atoms. An example of such an event is
presented in the top panel of Fig. 6. In this diffusive event an
O atom which is initially onefold coordinated �the blue atom
labeled “O1” in the panel� recovers its complete coordination
by forming a bond with a Si atom �the violet atom labeled

FIG. 5. �Color online� Si and O migration energy �top panel�
and pre-exponential factor D� �bottom panel� as a function of the Si
concentration.

FIG. 6. �Color online� Snapshots of events belonging to the
O-driven mechanism �top�, Si-driven mechanism �center�, and
bond-swapping mechanism �bottom�. The mechanisms are de-
scribed in detail in the text. Atoms involved in the processes are
highlighted in green, blue, and violet and identified by Si and O
symbols �followed by numbers when more than one atom of the
same chemical species is involved in the process�.
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“Si” in the panel�. In order to do so, the Si atom breaks a
bond with another O �the green atom labeled “O2” in the
same panel� which therefore becomes onefold coordinated.
We refer hereafter to this mechanism as O driven. Of course,
events with O and Si atoms with different initial and final
coordination, all belonging to the O-driven mechanism, oc-
cur in our simulations. The second kind of mechanism is
analogous to the first one but for that in this case Si atoms
change their coordination. An example of such an event is
shown in the central panel of Fig. 6. Here, two Si atoms are
initially threefold coordinated �blue and green atoms labeled
“Si1” and “Si2,” respectively, in the panel�. By forming a
bond among them they change their coordination from 3 to 4
so restoring their perfect coordination. We refer hereafter to
this mechanism as Si driven. As above, events with O and Si
atoms with different initial and final coordination, all belong-
ing to the Si-driven mechanism, occur in the simulation. Fi-
nally, in the third kind of mechanism a Si-Si bond is swapped
for a Si-O bond �or vice versa�. An example of this mecha-
nism is presented in the bottom panel of Fig. 6. In this event,
the green Si �labeled Si2 and the violet O �labeled “O”� are
initially bonded. After the swapping the green Si atom is
bonded to the blue Si �labeled Si1�. We shall refer to this
mechanism as bond swapping. A possible explanation of the
behavior described above is the attempt of miscoordinated Si
and O atoms to restore the optimal coordination �O-driven
and Si-driven mechanisms� or to establish a network of
chemical bonds that minimize the stress in a region of the
sample �bond swapping�.

In order to implement the method described in Sec. II we
need to identify collective variables able to monitor the oc-
currence of events of the above types. For this purpose we
use total and partial coordination numbers. The former
counts the total number of neighbors of a given atom while
the latter takes into account also their chemical nature. Math-
ematically, the partial coordination number if defined as

�i
B = �

j�B


�rij − rcut� , �12�

where �i
B is the coordination number of the ith atom with

respect to atoms of the species B, 
�r−rcut� is the Heaviside
step function, rij is the distance between atom i and atom j,
and rcut is the cutoff distance beyond which two atoms are no
longer considered bonded. The sum in Eq. �12� runs over
atoms of the chemical species B. The total coordination num-
ber can be obtained from partial coordination number ac-
cording to the following formula:

�i = �
B=1

Nsp

�i
B, �13�

where the sum runs over the Nsp chemical species in the
sample �two in the present case�.

The O-driven mechanism can be monitored following the
variation in the total coordination number of the O atoms
�hereafter referenced by the symbol �O�. It is worth mention-
ing that analyzing the partial coordination numbers we dis-
covered that �O

O �number of O atoms bonded to O atoms� is
always zero. This means that under the condition of the

present simulations O2 molecules are never formed. Simi-
larly, we identify events belonging to the Si-driven mecha-
nism monitoring changes in the value of total coordination of
Si atoms ��Si�. Finally, we use partial coordination �Si

O and �Si
Si

for identifying events in which a Si-O bond is swapped for a
Si-Si bond �or vice versa�, under the constrain that the total
coordination number of the atom considered is unchanged
���Si

O +��Si
Si=0�.

Using these collective variables we can identify the time
at which events of a given mechanism occur. The change in
collective variables �i

B and �i also indicates that the atom i
�and possibly the atoms bonded to it� is involved in the dif-
fusive step. Then, applying Eq. �10� on these atoms, distin-
guishing between Si and O, we compute the MSD displace-
ment relative to a given mechanism and the corresponding
diffusivity. We remark that the three mechanisms introduced
above account for more than the 90% of the total MSD at all
temperatures and Si concentrations.

From the so-computed MSD we can calculate the DM�
�T�

of each individual mechanism and, from this, the corre-
sponding EM�

and D�
M�. In Fig. 7 are reported EM�

and D�
M�

at various stoichiometries. For comparison, in Fig. 8 we re-
port the corresponding data obtained through the Da Fano
and Jacucci method.7 Our calculations 	Fig. 7, top
 show that
at lower Si concentration the mechanism with the lowest
migration energy is the O-driven mechanism. When the Si
concentration is increased, the activation energy of the Si-
driven and bond-swapping mechanisms is reduced below
that of the O-driven mechanism which, for a Si concentration
above 37%, rises. Concerning the pre-exponential factor, for
Si concentration below 39% the D�

M� of Si-driven and
O-driven mechanisms is about the same 	see Fig. 7, bottom
.
However, above this value, the D�

M� of the O-driven mecha-
nism is largely reduced.

An equivalent analysis performed on the basis of Eq. �11�
taken from Da Fano and Jacucci7 produced results in quali-
tative agreement with those obtained from the MSD of each

FIG. 7. �Color online� O-driven �red squares�, Si-driven �blue
dots�, and bond-swapping �green triangles� migration energies EM�
and pre-exponential factor D�

M� as computed by the diffusivity
DM��T� defined in Sec. II. The solid �black� lines without symbols
represent the total migration energy and pre-exponential factor of Si
�see Fig. 5�.

ORLANDINI et al. PHYSICAL REVIEW B 81, 014203 �2010�

014203-6



individual mechanism �see above�. EM�
and D�

M� obtained
from Eq. �11� are reported in Fig. 8. It can be seen that, as in
the case of Fig. 7, the migration energy of the O-driven
mechanism rises for higher Si concentration. At the same
time, the migration energy of the Si-driven and bond-
swapping mechanisms both decrease.

It is also interesting to determine the relevance of each
mechanism with respect to the total diffusivity at the given
temperature and Si concentration. In Fig. 9 we report the
relative occurrence of the D�T� due to each of the three
mechanisms 	hereafter referred to as %D�T�
 as a function of
the stoichiometry of the samples at few selected tempera-
tures. A similar trend is observed in the whole range of tem-
perature considered in this paper �1500–3000 K�. For tem-
perature below 1500 K, we calculated the %D�T� on the
basis of data extrapolated from the EM�

and D�
M� of each

mechanism, both using our method and the method of Da
Fano and Jacucci. These results are shown in Fig. 10.

Figure 9 shows that in stoichiometric conditions the
O-driven mechanism is the dominating one. However, as the
Si concentration increases, the Si-driven mechanism be-

comes the most relevant. At low temperatures �T
�2300 K�, already an increase in Si concentration as low as
2% has a dramatic effect on the fraction of diffusivity due to
Si and O undercoordination. At higher temperatures �T
�2600� this effect is less evident. For example, at 3000 K
and a %Si=35%, the contribution of Si-driven and O-driven
mechanisms is about the same. Concerning the bond-
swapping mechanism, its contribution to the diffusivity is
negligible for Si concentration 37–41%. At higher Si con-
centrations ��41%� it becomes active, reaching a level of
contribution to the diffusivity as high as 15–20 %.

Overall the above results substantiate a robust model for
diffusion in stoichiometric and nonstoichiometric a-SiO2. In
systems close to stoichiometric SiO2�%Si�35%� there is a
natural abundance of Si and O coordination defects. How-
ever, while threefold-coordinated Si atoms are rather stable
onefold-coordinated O are not. Therefore, an higher number
of defective O will undergoes to stepwise diffusive events
aimed at restoring their perfect coordination and this causes
the stepwise diffusive events observed in our simulations.
Concerning the bond-swapping mechanism, it is not effective
in causing the diffusivity as very few and stable Si-Si bonds
are either present or can be formed at a low Si concentration.

At variance, for higher Si concentrations the overall
amount of defects present in the samples, both of coordina-
tion or “local” stoichiometry nature, is higher and this in-
creases the Si diffusivity. However, due to the overabun-
dance of Si, the amount of defective O atoms is reduced.
This fact reduces the contribution of the corresponding
mechanism to the diffusivity. On the contrary, the amount of
defective Si is increased and therefore the Si-driven mecha-
nism is more effective at these concentrations. At the same
time, the concentration of Si-Si bonds is also increased
which induce an increase in the diffusivity due to the bond-
swapping mechanism.

Finally, as for the thermodynamical conditions, the effect
of the temperature is to level the contributions of the various
mechanisms to the diffusivity. This is consistent with our

FIG. 8. �Color online� O-driven �red squares�, Si-driven �blue
dots�, and bond-swapping �green triangles� migration energies EM�
and pre-exponential factor D�

M� computed according to Ref. 7.

FIG. 9. �Color online� Relative contribution to the total diffu-
sivity due to O-driven �red squares�, Si-driven �blue dots�, and
bond-swapping �green triangles� mechanisms.

FIG. 10. �Color online� Relative contribution to the total diffu-
sivity due to O-driven �red squares�, Si-driven �blue dots�, and
bond-swapping �green triangles� mechanisms. In the inset we report
the same quantities calculated according to Eq. �11� taken from
Ref. 7.
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model as, at higher temperatures, energetically less favored
defects become more abundant and therefore the correspond-
ing mechanisms become more effective.

V. CONCLUSIONS

In this paper we have analyzed the diffusion mechanism
in SiO2−x samples at various Si concentrations and at differ-
ent temperatures using classical molecular-dynamics simula-
tions based on the Billeter et al.12 model potential. We have
demonstrated that this potential is able to produce results in
reasonable agreement with previous experimental and theo-
retical works. In particular, we have found that the increase
in Si concentration increases the diffusivity of Si, in agree-
ment with experiments.

We have investigated the Si diffusion process and we
have identified a set of mechanisms which might be respon-
sible for this phenomenon in SiO2−x. In particular, we have
identified that the three most important mechanisms govern-
ing the diffusion are: �i� the tendency of undercoordinated O
atoms to restore the complete coordination, �ii� the tendency
of undercoordinated Si atoms to restore the complete coordi-

nation, and �iii� the swapping of Si-O bonds for Si-Si bonds
�and vice versa�. This behavior has been interpreted in terms
of the abundance of defects compatible with the identified
mechanisms. In order to measure the contribution of each of
them to the diffusivity, we have developed a method to com-
pute the diffusivity associated each mechanism. Using this
technique, we were able to demonstrate that at low Si con-
centration the O-driven mechanism is responsible for the dif-
fusion of Si while at higher concentration the diffusion is due
to the Si-driven and bond-swapping mechanisms.

These results, and, in particular, the dependency of the
relative relevance of the various mechanisms on the Si con-
centration and the thermodynamical conditions, suggest two
main conclusions: �i� a single diffusion path is not adequate
for describing this phenomenon as it might depend on the
local Si concentration �fluctuations of stoichiometry might
occur in real samples� and �ii� temperature deeply affects the
diffusion mechanism.
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